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Abstract. An explicit formula is given for evaluating the transmission coefficient of 
one-dimensional potential barriers corresponding to localised forces. The method is based 
on a simple discretisation of the Schrodinger equation leading to a three-term recursion 
relation. A continued fraction is then introduced in a quite natural way. Examples are 
provided to shed some light on the efficiency of the procedure, as compared to semiclassical 
approximations. 

1. Introduction 

In  many instances the tunnelling of particles through a potential barrier has been 
invoked to reach some degree of understanding of the transport phenomena in 
heterogeneous systems. a-particle decay (Gamow 1928, Gurney and Condon 1929) 
and field emission from metal surfaces (Fowler and Nordheim 1928) are early examples 
of this effect. Later, the development of metal-insulator-metal junctions (Fisher and 
Giaever 1961, Nicol et a1 1960, Giaever 1960) led to the realisation of tunnel-emission 
electronic devices (Mead 196 1) which still keep on developing today. Point-contact 
diodes, used as infrared detectors, rectification or frequency mixing devices, have also 
been recently interpreted in terms of a barrier penetration (Lucas et a1 1977). 

In most of these cases, a calculation of the transmission coefficient for a one- 
dimensional model potential was necessary. Unless the model was simple enough to be 
exactly soluble (Duke 1969, especially chap 4), the most widely used method is certainly 
the semiclassical WKB approach (Wentzel 1926, Kramers 1926, Brillouin 1926a, b, 
Langer 1937, Furry 1947). The transmission factor is often very easily written in this 
approximation but, in many cases, the value obtained gives only a crude idea of the real 
penetration coefficient. By contrast, the expression considered here can, in principle, 
produce a value of the transmission coefficient arbitrarily accurate, very good accuracy 
often being obtained with very slight computation effort. In essence, the method 
consists in approximating the Schrodinger equation itself by using an appropriate 
discretisation scheme and solving exactly this approximate problem. This is, to some 
extent, an alternative to the semiclassical method where approximate (i.e. asymptotic) 
piece-wise solutions are connected to fit as well as possible the exact Schrodinger 
equation. 
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2. Discretisation 

A previously developed example (Vigneron and Lambin 1979) shows that the following 
discrete form of the one-dimensional Schrodinger equation: 

= [ V ( X ) - - l * ( X )  
* (X+h)-2*(x)+*b-h)  

h2  

keeps most of the properties of the original continuous form: 

in the case of a periodic potential v (x). The advantage of the discrete formulation is that 
it can be solved efficiently in many cases by means of continued fractions. The same 
scheme will be used here to derive an expression of the transmission coefficient in a 
one-dimensional barrier. In this problem, the concept of current of probability density 
is of prime importance. It is crucial to realise that this concept can also arise from the 
discrete formulation (2.1). 

Consider the grid points (x,), where p is an integer in the range -cc < p  < +a, 
separated by a step size h = xp+l -xp. The discrete equation can be put into the form 

where 

(2.4) 

and 

6 , ( ~ )  = 2 +  h2[v(X,) -63. (2.5) 

The current of probability for the continuous case (2.2) is defined as 

For any steady state, j (x)  is independent of the abscissa x. If this expression is 
discretised over the grid by using the approximations (correct to order h2  like (2.1)): 

( 2 . 7 ~ )  $(x,+;) = 3[*(Xp+l) + *(x,)l 
1 

dx h 
d*(xp+4) = - [*(x,+1) - *(X,)l 

it gives rise to the following corresponding value: 

I * b p +  1) l 2  Im R,. 
h j(xp+;)= - 2 

(2.7b) 

This quantity can be regarded as a rigorous equivalent of the current of probability 
density for the discretised problem. Considering indeed relation (2.3), it is quite 
straightforward that, for any value of p :  

i(xp-d = i(x,+:). (2.9) 
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That property simply expresses the spatial uniformity of the current of probability as 
required for a steady state. In the next section, this concept of discrete current will be 
used for deriving an expression of the transmission coefficient of a potential barrier 
arising from a localised force. 

3. Transmission coefficient for a localised force 

The restriction to a localised force, which is considered in the present approach, simply 
means that one is considering potential functions similar to that shown in figure 1. The 
potential v ( x p )  varies only inside the interval [xo,  x,,+~] and remains constant outside 
this interval: 

in region I ( x  s xo):  v ( x )  = VI (3.1) 

in region I1 ( x o <  x <x,,+~): v ( x )  arbitrary (3.2) 

in region I11 ( x  ~ x , + ~ ) :  u ( x )  = VIII .  (3.3) 

The step size h is related to the number n of points defined inside this interval ( x o  and 
x,+ excluded) : 

Outside region 11, the discretised Schrodinger equation reduces to a linear finite- 
difference equation with constant coefficients: 

( c I ( ~ p + l ) - P ( c I ( X p ) + ( c I ( x p - l )  = o  

I 

(3.5) 

Figure 1. The kind of potential considered in this paper. This potential is constant outside 
region 11. 
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with, in region I, 

p =/31=2 + h2[t.+- E ]  (3.6) 

and, in region 111, 

p = = 2 + h2[vIII - E ] .  (3.7) 

This equation can be solved exactly in both regions. In region I, from which one 
supposes the incidence of particles, the wavefunction is a linear superposition 

$(Xp)=AU(Xp)+BW(Xp) (3.8) 
of the following simple waves ( p  s 0): 

u(x,) = [R-]IP' (3.9) 

with 

corresponding to incident particles and carrying a positive current, given by 

j = -  [ 1- (!3)2] 1'2, 

" h  
and 

w(x,) = [Rf]IP' 

with 

which corresponds to reflected particles and carries a negative current 

j =-"l-(!5)2]1'2 
" h  

(3.10) 

(3.11) 

(3.12) 

(3.13) 

(3.14) 

The current supported by the wave (3.8) can be shown to be simply lA1*jU + IB1*jW. This 
assertion is also true in the continuous case for pure travelling waves in a region where 
the potential is constant. That property is not destroyed by the discretisation process 
considered here. 

In region 111, the escaping particles are described by the single term 
2 1'2 P 

$ ( x n + l + p ) = { F + i [ ~ - ( F )  ] } 
for which the current of probability is simply 

(3.15) 

(3.16) 

The reflection coefficient is defined, as in the continuous case, as the ratio of the 
reflected to the incident currents: 

(3.17) 
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and the transmission coefficient as the ratio of the transmitted to the incident current: 

(3.18) 

With these definitions, the spatial uniformity of the total current (which yields it = 
IAi2ju + iB12jw) is simply expressed as 

R + T = l ,  (3.19) 

a result in agreement with what is obtained from the continuous equation. The 
reflection coefficient can then be evaluated as follows. From the recurrence relation 
(2.3), the quantity R-l can readily be expressed as a terminating continued fraction 

(3.20) 

But, on the other hand, by using (2.4) and (3.8), the same quantity can be expressed as 

From this, the reflection coefficient can be derived, 

(3.21) 

(3.22) 

and easily computed. Gautschi (1967) reviews some algorithms for the evaluation of 
continued fractions. The best suited here is certainly the forward recursion method, 
which has over the direct backward computation the advantage of avoiding much 
complex arithmetic. The procedure is described in detail by Wall (1967). It consist's in 
evaluating the continued fraction as 

R-1 =An+z/Bn+l (3.23) 

where the numerator and the denominator are obtained by means of the following 
recursion relations, which hold for p = 2, 3, . . . , n, 

A p + 1  = A p b p ( E ) - A p - l  

Bp = Bp-lbp(E)-Bp-z. 

The starting values are, respectively, 

(3.24) 

(3.25) 

(3.27) 
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The last step, which is the only one requiring complex arithmetic, leads to evaluate 

A n + 2 = A n + l z  - A n  (3.28) 

Bn+l = B,z - B,-1 (3.29) 

the final approximant 

where 

Using this result, the reflection coefficient can be evaluated from 

lAn+z-R-Bn+i12 R =  I A , + ~  - R + B , + ~ I ~  
and the transmission coefficient follows immediately from (3.19). 

(3.30) 

(3.31) 

4. Examples 

The transmission coefficient produced by the algorithm just described is now compared 
to some classical results. An interesting case that can possibly be considered refers to 
the well-known model 

1 
cosh2 x U ( X )  = ___ (4.1) 

which can be treated exactly, at least for energies E smaller than the maximum potential 
value: E < 1. The exact transmission coefficient is here given by the following formula 
(see, for example, Landau and Lifshitz 1967): 

sinh' TJ; 
sinh' d ; + c o s h 2  ~ J 3 / 2 '  

T =  (4.2) 

From another viewpoint, the WKB approximation is certainly the most usual method 
used for determining the penetration factor of such a smooth barrier. In this latter 
approach, the transmission coefficient is given by the following simple expression: 

(4.3) - 2 K  TWKB = e 

where 

K = I," ( u ( x )  - dx (4.4) 

where a and b are the classical turning points corresponding to the actual value of the 
energy E .  This approximation is only justified if the transmission coefficient is small. 
This is normally not the case near the top of the potential barrier, where K tends to 
vanish. This reduces the validity of such an expression to a region of energy reasonably 
smaller than the maximum of the potential hill. This is certainly a serious drawback of 
the semiclassical method, which is not encountered in the direct numerical approach 
described in this paper, Kemble (1958) has proposed a modification of the expression 
(4.3), accounting for a quadratic behaviour of the potential near the top of the barrier. 
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The expression 

1 
T K = -  

1 +ezK’ (4.5) 

being exact for a parabolic hill and identical to (4.3) for large K, is believed to provide a 
better value of the transmission factor for the whole range of energy. 

The results provided by the different approaches are compared in table 1. The 
WKB expression can be obtained exactly for this case: 

(4.6) - 2 d l - J e )  TWKB = e 

Table 1. Comparison between the exact, WKB and continued fraction approaches for the 
determination of the transmission coefficient. The potential barrier is described by v ( x )  = 
l/cosh* x. 

Transmission coefficient T 

Continued fraction (3.31) 

Energy Exact (4.2) WKB (4.3) Kemble (4.5) n = 50 n = 200 

0.2 0.0592832 0.031 0.030 0.0594 0.059 275 
0.4 0.1803214 0.099 0.090 0.1805 0.180 35 
0.6 0.3546720 0.243 0.195 0.3546 0.354 70 
0.8 0.5405463 0.515 0.340 0.5400 0.540 49 
1 0.696 2282 1.000 0*500 0.6955 0.696 13 

Kemble’s method does not produce a better result than the WKB method except 
perhaps near ~ = l ,  where both give quite inaccurate results. In performing the 
numerical computation of equation (3.31), a potential value u ( x )  = 0 has been taken for 
x s  - 5 and x 2 5 ,  for both n = 50 and n = 200 in table 1. Taking u ( x )  = 0 only for 
xs - 10 and x 3 10 with the same discretising step did not change the transmission 
coefficient by more than 0.01% in any case. As expected, the direct numerical 
approach gives a far better result in the whole range of energy, even for a rather small 
number of points defining the discrete mesh. The convergence of the method when n is 
increased is not very fast ( h 2  convergence). The produced transmission coefficient is 
however already pretty good for a reasonable step size (n = 50). 

When the height of the barrier is made higher by multiplying the previous potential 
(4.1) by some large amplitude vo,  the WKB approximation is expected to provide a 
better result. Table 2 compares the semiclassical approximation with the continued 
fraction method in the case where uo equals 15. As in table 1, the potential is taken to be 
zero for x s - 5 and x L 5 .  For small values of the transmission coefficient, the WKB 
approximation can be compared to the continued fraction method with 50 points. 
However, for energies lying near the top of the barrier, the semiclassical approach 
becomes less accurate. Another feature of the discretisation method is that a better 
precision can be reached if, as shown in table 2, one reduces the step size. 

From the data provided in tables 1 and 2 it can be noticed that, for a given step size, 
the present method loses accuracy when the barrier height is increased (by contrast with 
WKB). This can be understood as follows: the local period (or decay length) of the 
wavefunction $ ( x )  at the point x is of the order of ( I u ( x ) - ~ l ) ’ ’ * .  In order to describe 
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Table 2. Comparison between the exact, WKB and continued fraction approaches for the 
determination of the transmission coefficient. The potential barrier is described by u ( x )  = 
15/cosh2 x. 

Transmission coefficient T 

Continued fraction (3.31) 

Energy Exact WKB (4.3) Kemble (4.5) n = 50 n =200 n =400 

3 0 , 1 7 6 3 4 ~ 1 0 - ~  0.14X10-5 0 . 1 4 ~ 1 0 - ~  0.21X10-5 0.178X10-5 0 . 1 7 7 0 ~ 1 0 - ~  
6 0.15996 x 0.13 X 0.13 x 0.17 x 0.161 x 0.1602 x 
9 0.50592 X lo-' 0.41 X 0.41 X lo-' 0.52 X lo- '  0.507 X lo-' 0.5063 X 

12 
15 0.55074 1 .oo 0.50 0.547 0.5504 0.5506 

0.85846 X lo-' 0.76 X lo - '  0.71 X lo - '  04579X lo- '  0.85840x lo - '  045843 X l o - '  

correctly the variations of the wavefunction in a discrete scheme, this period should 
contain several step lengths. This restriction amounts to requiring that 

(4.7) 
If the energies ( v  ( x )  and E )  are multiplied by UO, the step size must be reduced by a factor 

-0.51 I I I I I I I 4 
0 10 20 30 LO 

Energy c 

Figure 2. Transmission coefficient produced by the continued fraction approach for a 
square-top barrier of height 10 and width 2. The interval [0 ,2]  has been divided into 101 
sub-intervals. The relative discrepancies between the approximate and exact values are 
given in units of ( a )  Transmission coefficient calculated from equation (3.31). ( b )  
Relative deviation from the exact result (in units of 

T - T (exact) 
IT(exact)l ' 
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&in order to expect to keep a constant accuracy. To impose the condition (4.7) is also 
important from a practical point of view. When (4.7) is satisfied, all coefficients bp(E) in 
the continued fraction (3.20) have a nearly constant value of the order of 2. The 
polynomials generated by equations (3 -24) and (3.25) bear resemblance to Chebyshev 
polynomials (obtained for bp(E) = 2). The local values of these polynomials remain 
reasonable: an overflow has never been encountered so far in computing (3.20) by the 
method suggested in 9 3. 

In the region E < vo,  the transmission factor increases monotonously. It should be 
interesting to know if the continued fraction approach is also successful in accounting 
for resonances at higher energies. A typical model for illustrating this situation is the 
square-top barrier, for which the penetration factor exhibits characteristic interference 
oscillations. The case where a potential discontinuity occurs can also be treated in the 
present approach. However, the quadratic convergence rate of the method is reduced 
to a linear rate, unless the discontinuity is one of the discretisation points and the 
potential is defined as the arithmetic mean of its left and right limits at that point. Figure 
2 displays the result obtained in the case of the following potential: 

v ( x )  = 10 

v ( x )  = 5 

v ( x )  = 0 otherwise. 

for 0 < x < 2 

for x = 0 and x = 2 (4.8) 

The transmission coefficient is plotted against the energy together with the relative 
difference between the numerical and the exact values. The agreement is found to be 
quite remarkable. 

5. Conclusion 

The numerical method proposed here to evaluate the transmission coefficient of a 
one-dimensional potential barrier is based on a simple discretisation of the kinetic 
energy operator. This scheme transforms the continuous Schrodinger equation into a 
three-term recursion relation, well suited to be handled by means of continued 
fractions. The discrete equation retains the most important features of the continuous 
original problem and the concepts developed in this latter case can be adapted to the 
discrete formulation. In this context, the current of probability density is redefined in a 
suitable form accounting for the discrete aspect of the Hamiltonian. Using this concept 
leads us to formulate an explicit expression for the transmission coefficient. Unlike 
analytic approximations (like that obtained from WKB formulae), the method can 
produce an arbitrarily accurate transmission factor by reducing the step size. Though 
the (quadratic) convergence is somewhat slow, a reasonable number of steps will often 
produce an accurate result. The algorithm is extremely easy to implement and does not 
require much memory allocation. It is expected to give a fast and accurate answer to 
most one-dimensional scattering problems, as soon as an effective potential can be 
assumed. 
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